Closeup of Anna Rosen

Anna Rosen, Ph.D.

Pronouns: Anna

Assistant Professor

College of Sciences
Department of Astronomy

San Diego

Phone
999-999-9999
Location
address
city, state, zip
Mail Code
1234
Fax
999-999-9999

Areas of Expertise

Computational and Theoretical Astrophysics, Star Formation, Massive Stars, Protostellar Evolution, Interstellar Medium, Star Clusters, Stellar Feedback

Student Opportunities

  1. A
  2. B

BIO

My research interests are in theoretical and computational astrophysics with an emphasis on star formation. I use numerical simulations to study the formation of massive stars and massive star clusters. I am particularly interested in how stellar feedback— the injection of energy and momentum by young stars— shapes the interstellar medium and galaxies.

The goal of my research is to understand which stellar feedback processes dominate the star formation process for massive stars and massive star clusters and to determine how feedback from the most massive stars in these clusters can limit star formation and may lead to the cluster’s ultimate disruption. I develop new numerical methods and perform simulations using the three-dimensional radiation-magnetohydrodynamics (RMHD) adaptive mesh refinement code ORION2 and the STARFORGE framework, based on the (finite mass) mesh-less GIZMO RMHD code, to work on these problems.

I was a National Science Foundation (NSF) Astronomy & Astrophysics and UC Chancellor’s Postdoctoral Fellow at UC San Diego, and a NASA Einstein and ITC Post-Doctoral Fellow at the Center for Astrophysics, Harvard and Smithsonian.

Details

Education
  1. Ph.D. Astronomy & Astrophysics
    University of California, Santa Cruz
  2. M.S. Astronomy & Astrophysics
    University of California, Santa Cruz
  3. B.A. Physics & Astrophysics (double major)
    University of California, Berkeley
Publications
  1. What Sets the Star Formation Rate of Molecular Clouds? The Density Distribution as a Finger- print of Compression and Expansion Rates. Appel, S.M., Burkhart, B., Semenov, V.A., Federrath, C., Rosen, A.L., Tan, J.C.; submitted to The Astrophysical Journal
  2. A Multiwavelength Study of the Massive Colliding Wind Binary WR 20a: A Possible Progenitor for Fast-Spinning LIGO Binary Black Hole Mergers. Olivier, G.M., Lopez, L.A., Auchettl, K., Rosen, A.L., Batta, A., Neugent, K.F., Ramirez- Ruiz, E., Jayasinghe, T., Vallely, P.J., Rowan, D.M.; submitted to The Astrophysical Journal, NASA ADS
  3. The TEMPO Survey I: Predicting Yields of the Transiting Exosatellites, Moons, and Planets from a 30-day Survey of Orion with the Nancy Grace Roman Space Telescope” Limbach, M.A., Soares-Furtado, M., Vanderburg, A., Best, W.J., Cody, A.M., D-Onghia, E., Heller, R., Hensley, B.S., Kounkel, A., Kraus, A., Mann, A.W., Robberto, M., Rosen, A.L., Townsend, R., Vos, J.M., Publications of the Astronomical Society of the Pacific (in press), NASA ADS
  4. Effects of the environment on the multiplicity properties of stars in the STARFORGE simulations”. Guszejnov, D., Raju, A.N., Offner, S.S.R., Grudi ́c, M.Y, Faucher-Gigu`ere, C., Hopkins, P.F., Rosen, A.L.; 2023, Monthly Notices of the Royal Astronomical Society, 518, 4693, NASA ADS
  5. A Massive Star is Born: How Feedback from Stellar Winds, Radiation Pressure, and Collimated Outflows Limits Accretion onto Massive Stars. Rosen, A.L.; 2022, The Astrophysical Journal, 941, 202, NASA ADS, ApJ 2022
  6. Effects of the environment and feedback physics on the initial mass function of stars in the STARFORGE simulations. Guszejnov, D., Grudi ́c, M.Y, Offner, S.S.R., Faucher-Gigu`ere, C., Hopkins, P.F., Rosen, A.L.; 2022, Monthly Notices of the Royal Astronomical Society, 515, 4929, NASA ADS
  7. Cluster assembly and the origin of mass segregation in the STARFORGE simulations. Guszejnov, D., Markey, C., Offner, S.S.R., Grudi ́c, M.Y, Faucher-Gigu`ere, C., Rosen, A.L., Hopkins, P.F.; 2022, Monthly Notices of the Royal Astronomical Society, 515, 167, NASA ADS
  8. Dust in the Wind with Resonant Drag Instabilities: I. The Dynamics of Dust-Driven Outflows in GMCs and H ii Regions. Hopkins, P.F., Rosen, A.L., Squire, J., Panopoulou, G.V., Soliman, N.H., Seligman, D., Stein- wandel, U.P.; Monthly Notices of the Royal Astronomical Society, 517, 1491, NASA ADS
  9. The dynamics and outcome of star formation with jets, radiation, winds, and supernovae in concert. Grudi ́c, M.Y, Guszejnov, D., Offner, S.S.R., Rosen, A.L., Raju, A.N., Faucher-Gigu`ere, C., Hopkins, P.F.; 2022, Monthly Notices of the Royal Astronomical Society, 512, 216, NASA ADS
  10. Less wrong: a more realistic initial condition for simulations of turbulent molecular clouds. Lane, H.B., Grudi ́c, M.Y, Guszejnov, D., Offner, S.S.R., Faucher-Gigu`ere, C., Rosen, A.L.; 2022, Monthly Notices of the Royal Astronomical Society, 510, 4767, NASA ADS
  11. ORION2: A magnetohydrodynamics code for star formation. Li, P.S., Cunningham, A.J., Gaches, B.L., Klein, R.I., Krumholz, M.R., Lee, A.T, McKee, C.F., Offner, S.S.R., Rosen, A.L., Skinner, M.A., Journal of Open Source Software, JOSS
  12. The Effects of Magnetic Fields and Outflow Feedback on the Shape and Evolution of the Density. PDF in Turbulent Star-Forming Clouds. Appel, S.M., Burkhart, B., Semenov, V.A., Federrath, C., Rosen, A.L.; 2022, The Astrophysical Journal, 927, 75, NASA ADS
  13. Observations of the Ag(3×1) Phase on Ge(111). Mullet, C.H., Rosen, A.L., Chiang, S., 2021, Journal of Vacuum Science & Technology A, 39, Issue 5, NASA ADS
  14. Evolution of Stellar Feedback in H ii Regions. Olivier, G.M., Lopez, L.A., Rosen, A.L., Nayak, O., Reiter, M., Krumholz, M. R., Bolatto, A.D., Astrophysical Journal, 2021, 908, 68, NASA ADS
  15. Continuity of Accretion from Clumps to Class 0 High-Mass Protostars. Avison, A., Fuller, G.A., N. Peretto, N., Duarte-Cabral, A., Rosen, A.L., Traficante, A., Pineda, J.E., Gu ̈sten, R., & Cunningham, N., 2021, Astronomy & Astrophysics, 645, A142, NASA ADS
  16. Winds in Star Clusters Drive Kolmogorov Turbulence. Gallegos-Garcia, M., Burkhart, B., Rosen, A.L., Naiman, J.P., Ramirez-Ruiz, E., 2020, Astro- physical Journal Letters, 899, 30, NASA ADS
  17. The Role of Outflows, Radiation Pressure, and Magnetic Fields in Massive Star Formation. Rosen, A.L., Krumholz, M. R., 2020, Astronomical Journal, 160, 78, NASA ADS
  18. Zooming in on Individual Star Formation: Low- and High-mass Stars. Rosen, A.L., Offner, S.S.R, Sadavoy, S.I., Bhandare, A., V ́azquez-Semadeni, Ginsburg, A., 2020, Space Science Reviews, 216, 62, NASA ADS
  19. Formation and Evolution of Disks Around Young Stellar Objects. Zhao, B, Tomida, K, Hennebelle, P., Tobin, J.J., Maury, A., Hirota, T., S ́anchez-Monge, A ́., Kuiper, R., Rosen, A., Bhandare, A., Padovani, M., Lee, Y., 2020, Space Science Reviews, 216, 43, NASA ADS
  20. Circumbinary Disks: Accretion and Torque as a Function of Mass Ratio and Disk. Duffell, P.C., D’Orazio, D., Derdzinski, A., Haiman, Z., MacFayden, A., Rosen, A.L., & Zrake, J., 2020, Astrophysical Journal, 901, 25, NASA ADS
  21. Massive Star Formation via the Collapse of Subvirial and Virialized Turbulent Massive Cores. Rosen, A.L., Li, P.S., Zhang, Q., Burkhart, B., 2019, Astrophysical Journal, 887, 108, NASA ADS
  22. unyt: Handle, manipulate, and convert data with units in Python. Goldbaum, N.J., ZuHone, J.A., Turk, M.J., Kowalik, K., & Rosen, A.L., 2018, Journal of Open Source Software, 3, 28, 809; NASA ADS
  23. Hybrid Adaptive Ray-Moment Method (HARM2): A Highly Parallel Method for Radiation Hydrodynamics on Adaptive Grids. Rosen, A.L., Krumholz, M. R., Oishi, J.S., Lee, A.T., & Klein, R.I., 2017, Journal of Compu- tational Physics, 330, 924; NASA ADS
  24. An Unstable Truth: How Massive Stars get their Mass. Rosen, A.L., Krumholz, M. R., McKee, C.F., & Klein, R.I., 2016, Monthly Notices of the Royal Astronomical Society, 463, 2553; NASA ADS
  25. Gone with the Wind: Where is the Missing Stellar Wind Energy from Massive Star Clusters?. Rosen, A.L., Lopez, L.A., Krumholz, M. R., & Ramirez-Ruiz, E.; 2014, Monthly Notices of the Royal Astronomical Society, 442, 2701; NASA ADS
  26. What Sets the Initial Rotation Rates of Massive Stars?. Rosen, A.L., Krumholz, M. R., & Ramirez-Ruiz, E.; 2012, Astrophysical Journal, 748, 97; NASA ADS
Grants
  1. A Super Star Cluster is Born: Probing the X-ray Emission of H72.97-69.39 in LMC-N79
    Co-I, Chandra Observation, Cycle 21 (awarded 100 ks) 2019
  2. To Leak or Not to Leak: Where are the Missing X-ray Photons from Massive Star Clusters?
    PI, Chandra Theory, Cycle 16 2014
  3. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?
    PI, Hubble Archival, Cycle 21 2013
Presentations
  1. Invited Colloquium
    UC Davis Physics & Astronomy Colloquium; Davis, CA 2023
  2. Invited Colloquium
    University of Hawaii Manoa Institute of Astronomy; Honolulu, HI 2023
  3. Invited Colloquium
    University of Arizona & Steward Observatory; Tucson, AZ 2023
  4. Invited Colloquium
    San Diego State University, Computational Sciences 2023 Research Center; San Diego, CA
  5. Invited Keynote Talk
    Science with the Line Emission Mapper: From Planets to 2023 Galaxies and Beyond; Harvard-Smithsonian CfA, Cambridge, MA
  6. Invited Colloquium
    The Ohio State University Astronomy Department; 2023 Columbus, OH
  7. Invited Colloquium
    University of Oregon Physics Department; Eugene, OR 2023
  8. Invited Talk
    IAU Challenges & Innovations in Computational Astrophysics Meeting 2022
  9. Invited Seminar
    UC San Diego Astronomy Seminar; La Jolla, CA 2022
  10. Invited Colloquium
    The Ohio State University Astronomy Department; 2022 Columbus, OH
  11. Invited Seminar
    Canadian Institute for Theoretical Astrophysics; Toronto, Canada 2022
  12. Invited Colloquium
    Durham University Astronomy Department; Durham UK 2022
  13. Invited Colloquium
    Carnegie Observatories; Pasadena, CA 2021
  14. Invited NSF REU Colloquium
    Center for Astrophysics. Harvard & Smithsonian 2021 Cambridge, MA
  15. Invited Colloquium
    Caltech Astronomy Colloquium; Pasadena, CA 2021
  16. Invited Colloquium
    Royal Observatory of Edinburgh; Edinburgh, Scotland 2021
  17. Invited Colloquium
    Rice University Physics & Astronomy Department; Houston, TX 2021
  18. Invited Colloquium
    University of Chicago Astronomy & Astrophysics Department; 2021 Chicago, IL
  19. Invited Review Talk
    Radiation Hydrodynamics: Implementation and Application; 2020 Royal Astronomical Society; London, UK
  20. Invited Review Talk
    International Space Science Institute, Star Formation Workshop; 2019 Bern, Switzerland
  21. Invited Talk
    Gas Fueling of Galaxy Structures Across Cosmic Time, Astro 3D Workshop; 2018 Barossa Valley, South Australia
  22. Invited Colloquium
    University of Florida Astronomy Department; Gainesville, FL 2018
  23. Invited Review Talk
    Stars Birth & Death: GMT Community Science Meeting; Honolulu, HI 2018
  24. Invited Talk
    Astrophysical Shocks Meeting, AIP Potsdam; Potsdam Germany 2018
  25. Invited Colloquium
    Department of Astronomy, University of Massachusetts Amherst; 2017 Amherst, MA
Service
  1. A
  2. B
  3. C
Clinical Trials
  1. A
  2. B
  3. C
Awards & Honors
  1. A
  2. B
  3. C
Patents & Copyrights
  1. A
  2. B
  3. C
Media
  1. How to Make Stars on a (super)Computer. Astrochats Interview hosted by MicroObservatory, 2020. Interviewee. YouTube
  2. Run LamRT+FLD (hybrid radiative transfer, laminar initial conditions)
    Adaptive mesh refinement (AMR) simulation of the collapse of a 150 M☉ laminar core with 20 AU maximum resolution and hybrid radiative transfer.
  3. Run LamRT+FLD_LR (low resolution comparison run)
    Low resolution AMR simulation of the collapse of a 150 M☉ laminar core with 40 AU maximum resolution and hybrid radiative transfer. Bubble shells are no longer adaptively refined to show that instabilities that develop at bubble shells must be resolved to be able to grow.
  4. Run LamFLD (FLD only comparison run)
    AMR simulation of the collapse of a 150 M☉ laminar core with 20 AU maximum resolution and only uses Flux Limited Diffusion (FLD) approximation for radiative transfer.
  5. Run TurbRT+FLD (hybrid radiative transfer, turbulent initial conditions)
    AMR simulation of the collapse of a 150 M☉ turbulent core with 20 AU maximum resolution and hybrid radiative transfer.
Fun Facts
  1. A
  2. B
  3. C