San Diego State University
Bachelor of Science Degree, Department of Astronomy

Program Mission

The Bachelor of Sciences degree in Astronomy is intended to provide a strong background in the field of astronomy and the research skills that will help the student go on to do research work in the physical sciences. Students that intend to pursue advanced degrees in the physical sciences would be best served by this major.

What follows are the Program Learning Goals (PLGs), Degree Learning Outcomes (DLOs), and Curricular MAP that lead to the Bachelor of Science degree in Astronomy.

Program Learning Goals (PLGs)

- PLG-1: Apply physical principles
 Apply physics concepts to the investigation of scientific questions in cosmology; galaxies, galactic structure, and the interstellar medium; star formation, stellar structure and evolution; and solar system components and their evolution.

- PLG-2: Investigate astronomical theories
 Develop a conceptual understanding of the major theories describing the formation, evolution, and destruction of astronomical entities (the solar system, stars, galaxies, and the universe), and investigate the observational evidence related to these theories.

- PLG-3: Critically evaluate scientific information
 Critically evaluate and interpret quantitative astronomical information (including observational data and computer models) within the framework of the scientific method.

- PLG-4: Communicate scientific information
 Effectively communicate scientific ideas in oral or written forms.

- PLG-5: Develop research skills
 Develop the technical, computational, and analytical skills needed to pursue an individualized research project.
Degree Learning Outcomes (DLOs)

- DLO-1: Apply scale arguments
 Apply the concepts of time, length, mass, and energy scales to understand the most important physical processes at work in different parts of the Universe.

- DLO-2: Critique the distance scale
 Identify the techniques that are used to measure the distances to different astronomical objects, explain the conceptual basis for each measurement method (such as trigonometry, standard candles, standard rulers, and the Hubble Law), and evaluate how they are assembled to produce a distance scale covering all astronomical objects.

- DLO-3: Describe the interactions of electromagnetic radiation
 Identify the origins of various forms of electromagnetic radiation, and describe the physical principles behind the interactions between radiation and matter (including astronomical detectors).

- DLO-4: Demonstrate a working knowledge of gravitation
 Demonstrate a working knowledge of gravitation by calculating the characteristics of an orbit or the mass involved.

- DLO-5: Evaluate star and planet formation theory
 Enumerate the steps of the theory that stars and planets form from large interstellar gas clouds, explain the physics justifying each step, and evaluate the theory by examining evidence collected from the solar system, other star systems, and gas clouds.

- DLO-6: Evaluate stellar evolution theory
 Examine the construction of theoretical models of stars from physical principles, and compare models to the observed characteristics of stars.

- DLO-7: Evaluate Big Bang theory
 Identify the evidence that led to a picture of an expanding universe, utilize physical principles to assemble a history of the evolution of the early universe, and explain how these lead to testable predictions about the universe’s history and future.

- DLO-8: Explain research motivation
 Explain the motivation and goals for a research project in clear language.

- DLO-9: Use astronomical tools
 Use astronomical instruments (such as telescopes and detectors) to collect observational data. Demonstrate the analytical skills required to construct a theoretical model.
• DLO-10: Analyze observational data
 Calibrate, analyze, and model observational data in order to test appropriate theories, and undertake theoretical calculations to describe existing data.

• DLO-11: Assess uncertainties in data
 Assess the uncertainties in observational data or numerical simulations to evaluate the potential to successfully address a scientific question.

• DLO-12: Draw sound conclusions from evidence
 Draw sound conclusions from observational evidence or theoretical arguments.

• DLO-13: Express scientific arguments in astronomy
 Express effective scientific arguments in written or oral form, to professional scientists or to the general public.

Curricular Map: Bachelor of Science Degree in Astronomy

The following Table lists the courses currently offered by the Department of Astronomy that are applicable to the Bachelor of Science Degree in Astronomy (see the SDSU General Catalog for specific requirements), along with the Degree Learning Outcomes (DLOs) that are (I)ntrduced, (P)racticed, and/or (D)emonstrated in each course.
Table 1. Curricular MAP for the Bachelor of Science Degree in Astronomy

<table>
<thead>
<tr>
<th>Course</th>
<th>DLO-1</th>
<th>DLO-2</th>
<th>DLO-3</th>
<th>DLO-4</th>
<th>DLO-5</th>
<th>DLO-6</th>
<th>DLO-7</th>
<th>DLO-8</th>
<th>DLO-9</th>
<th>DLO-10</th>
<th>DLO-11</th>
<th>DLO-12</th>
<th>DLO-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 201: Astr. Sci.</td>
<td>IPD</td>
<td>I</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>I</td>
<td>IPD</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>IPD</td>
</tr>
<tr>
<td>ASTR 320: Sol. Sys.</td>
<td>IPD</td>
<td></td>
</tr>
<tr>
<td>ASTR 350: Astr. Tech.</td>
<td>PD</td>
<td>IPD</td>
<td>I</td>
<td>D</td>
<td>D</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td></td>
</tr>
<tr>
<td>ASTR 440: Stars</td>
<td>P</td>
<td>P</td>
<td>PD</td>
<td>P</td>
<td>P</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>ASTR 450: Star Sys.</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>I</td>
<td>I</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td>IPD</td>
<td></td>
</tr>
<tr>
<td>ASTR 498: Sr. Proj.</td>
<td>PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD</td>
<td>PD</td>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>ASTR 510: Exoplanets</td>
<td></td>
<td>IPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>IPD</td>
<td>IPD</td>
<td></td>
</tr>
</tbody>
</table>

Note. — I=Introduced; P=Practiced; D=Demonstrated